

**ANNAI VIOLET ARTS AND SCIENCE COLLEGE
DEPARTMENT OF PHYSICS**

CONTINUOUS INTERNAL ASSESSMENT-I (ODD SEM)

Subject: Quantum Mechanics

Class: III B.Sc., Physics

Max. Marks: 25

Date: 02.09.2022-FN

Sub.Code:SR25C

**PART A (5 × 2 = 10 Marks)
Answer any FIVE questions**

1. List out any two limitations of classical mechanics.
2. Briefly explain the Photo electric effect.
3. State Compton Effect.
4. Define matter waves.
5. Write a note on principle of superposition.
6. What are wave packets?
7. Write about the Expected value of wave function.

**PART B – (2× 5 = 10 Marks)
Answer any TWO questions**

8. Explain the Photo electric effect with diagram.
9. Derive one dimensional Time-dependent Schrodinger equation for a free particle.
10. Discuss Time independent Schrodinger equation.

**PART C – (3 × 10 = 30 Marks)
Answer ALL questions**

11. Describe Frank and Hertz experiment to show the quantum nature of atoms with neat diagram.
12. Explain electron diffraction experiment with necessary diagram.
13. Discuss in detail about Ehrenfest theorem.

**ANNAI VIOLET ARTS AND SCIENCE COLLEGE
DEPARTMENT OF PHYSICS**

UNIT TEST-I

**Subject : BASIC ELECTRONICS
SCHEME OF VALUATION**

**Class : III B.Sc., Physics
Max.Marks : 50**

**Date:22.08.2022-FN
Sub.Code:SR25D**

**PART A (5 × 2 = 10 Marks)
Answer any FIVE questions**

1. limitations of classical mechanics- **Any two limitations- 2 marks**
2. Electrons are ejected from the surface of a metal when light is incident on it – 1 mark
Photoelectrons- 1 mark.
3. **Compton effect**, also called **Compton scattering**, increase in wavelength of X-rays and other energetic electromagnetic radiations that have been elastically scattered by electrons-**2 marks.**
4. A wave Associated with particle is called matter waves. - **1 mark**

$$\lambda = \frac{h}{p} = \frac{h}{mv} - \mathbf{1 mark}$$

5. Two or more waves meet at a point, the resultant displacement at that position is equal to the sum of displacements of the individual waves. – **1.5 mark**

Illustration – 0.5 mark

6. The wave function of a matter wave which confined to a small region of space is called wave packet – **1.5 mark**

Diagram – 0.5 mark.

$$7. \langle x \rangle = \int_{-\infty}^{\infty} \psi^*(x,t) x \psi(x,t) dx - \mathbf{1 mark}$$

This integral can be interpreted as the average value of x that we would expect to obtain from a large number of measurements.- **1 mark**

**PART B – (2 × 5 = 10 Marks)
Answer any TWO questions**

8. Definition-1 marks

Photons-1 mark

Diagram- 1 mark

Work function- 1 mark

Relativistic expression- 1 mark

9. Equation of energy and wave number – **1 mark**

Free particle wave function – **1 mark**

Derivation- **2 marks**

One dimensional Schrodinger equation- **1 mark**

10. $\psi(x, t) = u(x)T(t)$ -**2 mark**

$$\frac{-\hbar^2}{2m} \frac{\partial^2 u(x)}{\partial x^2} + V(x)u(x) = E u(x)$$

-1 mark

$$\psi(x, t) = u(x)e^{-iEt/\hbar}$$

-1 mark

PART C – (3 × 10 = 30 Marks)
Answer ALL questions

11. Theory- 2 marks

Experimental arrangement- **4 marks.**

Diagram –**4 marks**

Limitations –**2marks**

12. Experimental arrangement- **4 marks.**

Diagram –**4 marks**

Limitations –**2marks**

13. $\langle p \rangle = m \frac{d\langle x \rangle}{dt} = m \frac{d}{dt} \int_{-\infty}^{\infty} x |\psi|^2 dx = m \int_{-\infty}^{\infty} x \frac{\partial |\psi|^2}{\partial t} dx.$ - **3 marks**

$$\langle p \rangle = m \frac{d\langle x \rangle}{dt} = -i\hbar \int_{-\infty}^{\infty} \psi^* \frac{\partial \psi}{\partial x} dx.$$
 - **3 marks**

$$\frac{d\langle p \rangle}{dt} = - \int_{-\infty}^{\infty} \frac{dV}{dx} |\psi|^2 dx = - \left\langle \frac{dV}{dx} \right\rangle.$$
 - **4 marks**