

ANNAI VIOLET ARTS AND SCIENCE COLLEGE
DEPARTMENT OF PHYSICS

CONTINUOUS INTERNAL ASSESSMENT –I (ODD SEM.)

Subject: Mathematical Methods in Physics

Class : II B.Sc., Physics

Date : 2.09.2022-FN

Max.Marks : 50

Sub. Code: SR23A

PART A (5 × 2 = 10 Marks)

Answer any FIVE questions

1. Define ‘curl’ a vectors field.
2. Find the divergence of the vector $\vec{F} = x^2y\hat{i} = y^2z\hat{j} + z^2x\hat{k}$.
3. What is a scalar field?
4. Show that $\beta(m,n) = \beta(n,m)$
5. Define a gamma function.
6. Show that $\beta(4,1) = \frac{1}{4}$.
7. Write the Hermitian and unitary matrix.

PART B – (2 × 5 = 10 Marks)

Answer any TWO questions

8. Find $\text{div } \vec{F}$ and $\text{Curl } \vec{F}$ for the vector $\vec{F} = xy^3\hat{i} - 2x^2yz\hat{j} + 2yz^4\hat{k}$ at $(1, -1, 1)$
9. Show that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ where $m > 0, n > 0$
10. If $A = \begin{bmatrix} 2+i & 3 & -1+3i \\ -5 & i & 4-2i \end{bmatrix}$ show that AA^* is a Hermitian matrix where A^* is the conjugate transpose of A.

PART C – (3 × 10 = 30 Marks)

Answer ALL questions

11. Prove that $\text{curl curl } \vec{F} = \text{grad div } \vec{F} - \nabla^2 \vec{F}$

12. Show that

(a). $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ **(5)**

(b). $\beta(m, n) = \int_0^{\infty} \frac{y^{m-1}}{(1+y)^{m+n}}$ **(5)**

13. Evaluate $\int_{-\infty}^{\infty} e^{-x^2} dx$ using gamma function.

Prepared by
Dr. R. Mahesh
Asst.Prof. –Physics.