

ANNAI VIOLET ARTS AND SCIENCE COLLEGE
DEPARTMENT OF PHYSICS

CONTINUOUS INTERNAL ASSESSMENT-I (ODD SEM)

Subject: Numerical Methods

Class: III B.Sc., Physics

Date: 07.09.2022-FN

Max. Marks: 25

Sub.Code:-

PART A (5 × 2 = 10 Marks)

Answer any FIVE questions

1. Define Gauss-Jordan elimination method.
2. Find the inverse of the following matrix $\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$.
3. Define Bisection method.
4. List the two conditions to find the root of a polynomial in Bisection method .
5. Define Regula Falsi method.
6. Derive the equation of first approximation to find a root in Regula Falsi method.
7. Derive Newton- Raphson formula.

PART B – (2× 5 = 10 Marks)

Answer any TWO questions

8. Solve the following system of equations using Gauss Elimination method.
 $x+y+z=9; 2x-3y+4z=13; 3x+4y+5z=40$
9. Find the inverse of $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ using Gauss – Jordan method.
10. Solve for a positive root of $x^3 - 4x + 1 = 0$ by Regula Falsi method.

PART C – (3 × 10 = 30 Marks)

Answer ALL questions

11. Solve the equations $2x+3y+z=9, x+2y+3z=6, 3x+y+2z=8$ by the method of triangularisation.
12. Assuming that a root of $x^3 - 9x + 1 = 0$ lies in the interval (2, 4), find that root by Bisection method.
13. Using Newton's method, find the root between 0 & 1 of $x^3 = 6x - 1$ correct to 5 decimal places.

ANNAI VIOLET ARTS AND SCIENCE COLLEGE
DEPARTMENT OF PHYSICS

CONTINUOUS INTERNAL ASSESSMENT-I (ODD SEM)

Subject: Numerical Methods

Class: III B.Sc., Physics

Date: 07.09.2022-FN

Max. Marks: 25

Sub.Code:-

PART A (5 × 2 = 10 Marks)

Answer any FIVE questions

1. $AX=B$ is brought to a diagonal matrix- **1 mark**

Making all elements above the diagonal of A as zeros- **1 mark**

2. $|A| = 1$ - **1 mark**

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} - \text{1 mark}$$

3. Intermediate theorem of continuous function – **1 mark**

It works by narrowing the gap between the positive and negative until it closes in on the correct answer - **1 mark**

4. $f(x)$ is continuous and it can be algebraic or transcendental- **1 mark**

If $f(a)$ & $f(b)$ are of opposite sign, then atleast one real root between a and b should exist - **1mark**.

5. The Trial and error approach of Using “**False**” or “**test**” values for the variable and then alternating the test value according to the result. **-2 marks**.

6. Equation of chord - **1 mark**

$$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} - \text{1 mark}$$

7. Expansion of $f(\alpha_0 + h) = 0$ using Tailor's theorem. **-1 mark**

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \text{1 mark}$$

PART B – (2× 5 = 10 Marks)

Answer any TWO questions

8. $AX=B$ **-1mark**

Steps to make all elements above the diagonal of A as zeros-**3 marks**

$x = 1, y = 3, z = 5$ - **1 mark**

9. $AX = I$ - **1 mark**

7 steps - **3 marks**

Inverse of the matrix - $\begin{bmatrix} 3 & 1 & 3/2 \\ -5/4 & -1/4 & -3/4 \\ -1/4 & -1/4 & -1/4 \end{bmatrix}$ - **1 mark**

10. The root lies between 0 and 1 & another root lies between 1 & 2 - **0.5 mark**

$$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} \quad \text{0.5 mark}$$

5 approximations - **3 marks**

The root is 0.25410 - **1 mark**

PART C – (3 × 10 = 30 Marks)
Answer ALL questions

11. $AX = B$ - **2 marks**

Back substitution – **6 marks**

$z = 1/2, y = 1/2, x = 7/2$ – **2 marks**

12. The root lies between 2 and 4 - **1 mark**

$$x_1 = \frac{x_0 + b}{2} \quad \text{1 mark}$$

13 approximations - **6 marks**

The Approximated root is 2.9429 - **2 marks**

13. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ - **2 marks**

4 approximations - **6 marks**

The root correct to 5 decimal places is 0.73205 – **2 marks**